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1 Optimization of SVM

A: Convex Optimization: multiplicity of solutions in SVM The variables to the dual SVM
optimization are the Lagrange parameters αi, with one Lagrange parameter per datapoint, i.e. i =
1...M . As per the KKT conditions, the Lagrange parameters represent the weight given to each
datapoints to construct w =

∑
i αix

i.

Can we find different sets of αi that lead to the same optimum?

Let w = α1x
1 + α2x

2 be the optimal w. Since none of the datapoints are collinear, any pair of two
points is linearly independent. Hence, each point can be expressed as linear combination of two other
points.

We can hence construct x2 = β1x
1 + β2x

3 with appropriate scalars β1, β2. Replacing x2 in w, we
obtain a new set of αi for the same optimal w, namely w = (α1 + β1)x

1 + β2x
3.

B: Margin The KKT condition
∑

i αiyi = 0 implies that we have at least two support vectors, one
in each class. Hence, there exist two points , which we denote as x1 and x2 with y1 = 1 and y2 = −1,
for which the constraints yi(w

Txi + b) = 1 are satisfied.

We modify the constraint and set that all support vectors lie on a plane with equation yi(w
Txi+b) = a,

with a > 0. We have: {
wTx1 + b = a

wTx2 + b = −a
(1)

Substracting the two lines, we get wT (x2−x1) = 2a. Expanding the inner product, ∥w∥ = 2a
∥(x2−x1)∥ cos(θ) .

θ is the angle between w and the vector x2 − x1. We see that the factor a only scales the norm of the
vector w, but does not affect the choice of Support Vectors. It does not change the direction of w and
hence does not affect the orientation of the hyperplane.

C: Convexity of the relaxed problem Is f(w, ξ) = ∥w∥2 + C
∑

i ξi, ξi > 0∀i, C ≥ 0 convex?

f(w, ξ) = ∥w∥2 is strictly convex and
∑

i ξ, ξ > 0, ∀i is convex. Since the quadratic term is strictly
convex and grows faster than the linear term, the objective function is strictly convex. It hence admits
a single global optimum.

The addition of the slack variables, however, can shift the optimum of the objective function to a
solution that is not the true optimum (without relaxation of constraints). The relaxed optimization
finds an optimal solution that is a tradeoff between augmenting the margin across the two classes
(reducing the first term of the cost function) and reducing the cost of violating one or more constraints
(reducing the second term of the cost function).

The penalty associated to the violation of the constraint is conveyed through the choice of the constant
C. A large C will tend to force the optimization to find a solution close to the unrelaxed problem. This
is illustrated in Figure 1. When applying a small penalty, C = 5, for a violation of the constraints, the
optimization finds a separating hyperplane with a larger margin than with a hight penalty, C = 100.

D: Optimum of the relaxed problem: The true optimal solution to SVM is obtained for an
optimal value to the objective function and satisfaction of all constraints. In the relaxed problem,
the objective function is given by: minw,ξ∥w∥2 + C

M

∑
i ξi, with C ≥ 0 a constant penalizing for the

introduction of slacks and M the number of datapoints. Observe that the SVM objective function is
composed of a quadratic and linear cost, both of which are proportional to the width of the margin,
which we denote as a.
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Figure 1: Optimal solution of the relaxed SVM optimization when using a low penalty on slacks C = 5
versus a high penalty, C = 100.

Consider the group of four points in Figure 1. The two hyperplanes generated by w1 amd w2, both
optimal solutions for different values of C.

The first hyperplane defined by w1 has a margin equal to ∥w1∥2 = 2
a2
. One of the two points from

the white class is missclassfied. The costs associated to the constraint’s violation for this point is
entailed in the associated slack ξ. We show next that the slack is proportional to the distance to the
hyperplane.

Without loss of generality, we can assume b = 0 (shift of the origin). The constraints are satisfied at
equality for the two datapoints on the margin and for the point inside the margin with slack ξ. For
the latter, we have:

{
wT
1 x

i = 1 + x,

ξ = ∥w1∥∥x∥ − 1.
(2)

The second hyperplane w2 satisfies all constraints, hence ξ = 0,∀i and is solution to ∥w2∥2+C
∑

i ξi =
∥w∥2 = 2

(ηa)2
, 0 < η ≤ 1.

To determine if a solution with slack can lead to a value on the objective function that is equal or better
than the solution without slack, one must hence check whether ∥w1∥2+Cξ = 2

a2
+C 1

ηa ≤ ∥w2∥2 = 2
(ηa)2

.

Many cases will arise depending on the values of C and η. Observe that the associated cost on the
objective function to enlarging the margin is privileged over violating constraints, as the former grows
quadratically with the margin whereas the latter grows linearly. The solver will hence tend to privilege
solutions with small violation of constraints if these lead to an increase in the margin. The shift of
the optimum is illustrated in Figure 2.
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Figure 2: (Left) distribution of separating hyperplanes across a pair of datapoint. (Right) evolution
of optimum on SVM objective function for the distribution of hyperplane with and without slack.
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